High efficient degradation of Cefixime using UV/TiO$_2$ photocatalytic process: A comparison between photocatalytic and photolytic

Shima Sahraeian 1 Vali Alipour 1 Omid Rahmanian 1

1Department of Environmental Health, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.

Received 21 Feb, 2017 Accepted 9 Aug, 2017

Original Article

Abstract

Introduction: The existence of pharmaceuticals in aquatic ecosystem, their persistence and possible effects on living organisms and inefficient systems in removal of these compounds from water and wastewater are a growing concern. In this research, the UV/TiO$_2$ photocatalytic degradation of Cefixime was investigated so as to identify if this method was efficient for removal of Cefixime or not.

Methods: The experimental parameters like as primary concentration of Cefixime, catalyst dosage, solution pH and time were assessed and optimized. The photocatalytic analysis was based on residual Cefixime identification by HPLC. The chromatographic conditions were comprised of a reversed-phase C18 column with mobile phase consisting of 45:55 v/v mixture of Acetonitrile: water.

Results: The optimum removal efficiency for Cefixime was obtained after 60 min (90.98%) when 1 mg/L TiO$_2$ was used at pH=3. The increase of catalyst concentration from 1 to 70 mg/L led to a decrease in degradation efficiency.

Conclusion: According to results, UV/TiO$_2$ process could be a promising technique for the removal of Cefixime with good efficiency in a relatively short reaction time.

Key words: Cefixime, Removal, HPLC, Photocatalytic

Citation: Sahraeian Sh, Alipour V, Rahmanian O. High efficient degradation of Cefixime using UV/TiO$_2$ photocatalytic process: A comparison between photocatalytic and photolytic. Hormozgan Medical Journal 2017;21(3):159-168.

Introduction:

Medications are considered as micro-contaminants if they enter the environment from different sources, like as effluents of pharmaceutical factories and waste disposal (1). Among various drug combinations, special attention has been paid to antibiotics. Antibiotics can have adverse effects on aquatic and terrestrial environments because they can accumulate in the environment and maintain their stability. These adverse effects are evident even in very low concentrations (ng/L to mg/L) (2). The fate of pharmaceutical compounds according to their chemical and physical properties is predictable. Biodegradable antibiotics may mineralize to H$_2$O and CO$_2$ or may analysis to hydrophilic compounds which can pass over the wastewater systems and come into water sources, but non-biodegradable antibiotics can’t break down easily, thus they remain in sedimentation sludge and come to the environment without any changes (3). Cefixime (Figure 1), is an orally absorbed third generation cephalosporin antibiotic with molecular weight of 453.4 g/mol that was permitted by the U.S. Food and Drug Administration in 1997 for the
therapy of minor to moderate bacterial infections (4, 5). It acts by intrusive in the synthesis of bacterial cell wall. It binds to specific penicillin binding proteins positioned inside the bacterial cell wall make happen the inhibition of the third and last step of bacterial cell wall synthesis (6).

\[
\text{Figure 1. Cefixime structure}
\]

Different chemical and physical techniques such as membrane systems (7,8), biodegradation (9-13), chemical oxidation (14,15), adsorption (16-18) and ion-exchange (19) can be used to remove antibiotic from wastewater. Heterogeneous advanced oxidation processes (AOPs) treatment by means of semiconductors as photo-catalysts has been a capable process amongst advanced oxidation technologies (20). The benefit of AOPs is that they shortage mass transfer limitations and operate at ambient conditions. Three fundamental elements require in UV/catalyst processes: 1) a semiconductor with photosensitive surface (such as titanium dioxide due to its high stability, commercially existing, non-toxic, good performance and low cost), 2) a source of photon energy and 3) suitable position of the valence band potential. Semiconductors are characterized by valence and conduction bands that are separated by a band gap (2,21). When aqueous TiO\(_2\) suspension is irradiated by a source of photon of energy equal or greater than the band gap of the semiconductor (\(E_g = 3.2 \text{ eV}\)), electrons in the valence band excite to the conduction band and subsequently positive holes (h\(^+\)) and electrons (e\(^-\)) are generated and photo-catalytic oxidation happen (eqn.1).

\[
\text{TiO}_2 + hv (UV) \rightarrow \text{TiO}_2(e^- + h^+) \quad (1)
\]

Oxygen in the water can react with photo generated electron and reduce to superoxide radical anion (O\(_2^{*-}\)). The antibiotic may also reduce by the electrons. Hydroxyl radicals are highly reactive species which are the oxidation result of hydroxide anions and water by photo generated holes (22-25).

The goal of this paper is to assess the efficacy of advanced oxidation processes by UV-TiO\(_2\) as a photo-catalytic system for efficient elimination of Cefixime antibiotic from aqueous solution and finally make a comparison among this system, TiO\(_2\) in darkness, TiO\(_2\) in sun-light and alone UV to elucidate the photo-catalytic efficiency. However, there is no reported study, based upon the best our knowledge, on Cefixime degradation by TiO\(_2\) photo-catalysis in aqueous phase. The influence of operating parameters such as catalyst dose, irradiation time, pH and Cefixime concentration are investigated for field scale requests. Langmuir–Hinshelwood (L–H) model is used to attain kinetic parameters for the photo-catalytic degradation.

Methods:

Cefixime trihydrate was obtained from Farabi Company (Iran). Acetonitrile and Water both HPLC grade were purchased From Merk. Titanium (IV) oxide for analysis was purchased from merck (EMSURE®). Deionized water with an electrical conductivity of 0.05 \(\mu\text{S/cm}\) (Millipore S.A.S 67120 Molsheim) was used for the preparation of aqueous solutions. Sodium hydroxide and hydrochloric acid solution 0.1 \(M\) were apply to adjust the pH of the solutions. All chemicals were used without more purification.

The reactor used for photo-catalytic reactions is illustrated in Figure 2. A water bath was considered to maintain the temperature of the solution (30±1°C). Reactions were carried out using a medium-pressure UVC lamp (125 W, \(\lambda_{max}=247.3\) nm) as the irradiation source and kept in a quartz glass. Experimental solutions at different concentrations of Cefixime were prepared and transferred to a beaker within the reactor, under magnetic stirring.

The concentration of Cefixime was determined by HPLC (Shimadzu, Japan) that is consist of
single pump, 20 AD UFLC and UV-VIS detector which detect the analyte at 225 nm. Analysis was done on C18 column (250 mm × 4.6 mm) with 5 μm particle size and Injection Volume of 20 μl. LabSolution software was used to achieve Chromatogram. The mobile phase was made of 45 ml Acetonitrile and 55 ml water and an isocratic flow rate of 1 ml/min was used (26).

Figure 2. Photo-catalytic reactor scheme.

Cefixime stock solution (500mg/L) was prepared in deionized water and kept at 4°C, protected from light. Influence of each parameter was studied as a one at a time (A parameter was varied and the other parameters was kept constant). The Cefixime working solutions were prepared by diluting stock solution using deionized water for the different concentration of Cefixime (0.5-20 mg/L). Volume of the working solution was 50 mL. Then a certain dosage of TiO$_2$ (1-70 mg/L) was added to the prepared solution. Different pHs were adjusted by adding hydrochloric acid or sodium hydroxide and measured by the pH meter (Amtast AMT12, USA). Eventually the solution was transferred into the beaker and was magnetically stirred so as to ensure thorough mixing during the reaction. Cooling water was recirculated through the beaker to make a constant temperature (30±1°C). After that, TiO$_2$ was removed from the solution by a 0.45 μm membrane filter. Then the aqueous solution with the remaining Cefixime was quantified by HPLC analysis and the removal efficiency of Cefixime destroyed by the photo-catalytic process was calculated by the eqn. (2):

\[
\%R = \frac{(C_0 - C)}{C_0} \quad (2)
\]

Where, %R is percent removal, C_0 and C refer to Cefixime concentration at initial and after degradation process, respectively. A typical HPLC chromatogram of Cefixime is shown in Figure 3. All experiments were repeated in duplicate.

Figure 3. A typical HPLC chromatogram of Cefixime (Injection Volume=20 μl, wavelength=225 nm, mobile phase= Acetonitrile: water with 45 to 55 ratio, C18 column (250 mm × 4.6 mm) with 5 μm particle size)

Results:

The effect of different parameters on photo-catalytic degradation of Cefixime is shown in Figures 4-7. The removal efficiency of Cefixime is a function of pH. The effects of initial pH levels ranging from 3 to 11 on fixed concentration of Cefixime (20 mg/L) and catalyst loading (30 mg/L) are presented in Figure 4.

Figure 4. Effect of catalyst dosage on the photo-catalytic degradation of Cefixime (pH=3, Cefixime=20 mg/L, time= 20 min).
As can be seen, in pH=3 maximum degradation efficiency (88.5%) was occurred. When pH was increased to 5 a drop in efficiency removal was happened. When the pH increased from 7 to 11, the degradation rate raised up slightly.

The influence of catalyst dosage on the photo-degradation of Cefixime was investigated in the range of 0.5 to 70mg/L meanwhile the other reaction conditions were kept the same. As detailed in Figure 5, when 1mg/L TiO$_2$ was used the maximum degradation was achieved. By increasing the TiO$_2$: up to the 70mg/L, a little decrease was occurred.

In this study, times of 0-150 min was considered to evaluate the effete of time on the degradation procedure. According to the results in Figure 7, as time went on the removal rate was increased.

Conclusion:

Influence of pH

The pH has multiple roles on the efficiency of Cefixime photo-degradation process. pH effects can be evaluated by electrostatic interactions between TiO$_2$: charged particles and the contaminants. The pH of solution has a significant role in determining the degree of dissociation of pollutant and subsequently the amount of absorption in the ionized form. This point is related to pKa value of the pollutant which is considered 2.5 for Cefixime (27). Acid-alkaline properties of TiO$_2$: surface can have significant effects on its photo-catalytic function (28) as shown in eqn. 3 and 4:

\[
\text{TiOH} + \text{H}^+ \leftrightarrow \text{TiOH}_2^+ \quad (3)
\]

\[
\text{TiOH} + \text{OH}^- \leftrightarrow \text{TiO}^- + \text{H}_2\text{O} \quad (4)
\]

TiO$_2$: point of zero charge is around 6.5 (29). Therefore, TiO$_2$: has a positive charged surface in acidic conditions (pH<6.5) and has opposite charge in alkaline conditions (pH>6.5). As can be seen in Figure 4, maximum degradation efficiency was observed in pH=3 (88.5%). Because Cefixime is almost negatively charged at this pH while TiO$_2$: is positively charged. So antibiotic can be absorbed on the catalyst surface. Photo generated holes are considered as the main oxidation agent at low pHs.
because of their high oxidation potential. As the eqns. 5-6 show, they can produce hydroxyl radicals from water molecules and destroy Cefixime by oxidation reactions (30,31):

\[\text{TiO}_2(h\nu^+) + \text{H}_2\text{O} \rightarrow \text{TiO}_2 + \text{HO}^* + \text{H} \]
\[\text{Organic Pollutants} + h\nu^+ \rightarrow \text{oxidation products} \]

According to the eqns. 7-10, electrons formed in conduction band at low pH may also play an important role by converting oxygen into hydrogen peroxide or ruin Cefixime by reduction reactions (32):

\[\text{TiO}_2(\text{e}^-\text{CB}) + \text{O}_2 \rightarrow \text{TiO}_2 + \text{O}_2^* \]
\[\text{O}_2^* + \text{H}^+ \rightarrow \text{HO}_2^* \]
\[2\text{HO}_2^* \rightarrow \text{H}_2\text{O}_2 + \text{O}_2 \]
\[\text{Organic Pollutants} + \text{e}^-\text{CB} \rightarrow \text{reduction products} \]

In alkaline solution the negatively charged surface of titanium dioxide prevents adsorption of hydroxide anions and anionic Cefixime on the surface of TiO\textsubscript{2}; thus, the degradation efficiency reduces. Since the hydroxide anions are more available at very high pHs like as 11, hydroxyl radicals are generated easily (eqns. 11-12) (31):

\[\text{TiO}_2(h\nu^+) + \text{OH} \rightarrow \text{TiO}_2 + \text{OH}^* \]
\[\text{Organic Pollutants} + \text{OH}^* \rightarrow \text{degradation products} \]

According to the above discussion, it is expected that in the range of pH values 3-11 the removal efficiency is less than pH ≤ 3 and pH ≥ 11.

Effect of TiO\textsubscript{2} dosage

Catalyst concentration depends on factors such as particle geometry, photochemical reactor operating conditions and specifications of the lamp such as the wavelength and intensity. It is necessary to optimize the amount of catalyst to prevent the use of excessive amounts and also ensure that all photons received by the catalyst surface (24,33).

The catalyst concentration of 1mg/L was used as optimum dose, because the higher dosages of the catalyst led to decrease the photo-degradation efficiency. Two reasons can be expressed for this fact: 1) with increasing concentrations of TiO\textsubscript{2}, aggregation may occur and the number of active sites reduce, 2) increasing the concentration of catalyst, increase the turbidity of the solution and prevents the penetration of UV rays. Therefore, the photo-catalytic degradation process is weakened (23,28,34).

Effect of Cefixime concentration

The results showed that increase in the Cefixime concentration lead to decrease in photo-degradation efficiency, which was like as majority of the previous studies report (35,36). It is assumed that for a solution with high concentration of pollutant, a fraction of light might be absorbed by the contaminant molecules instead of catalyst. As a result, \(\cdot \text{OH} \) and \(\text{O}_2^* \) generation reduces and lowers the efficiency of the photo-catalytic process. Moreover, the availability of the generated active species on the surface of catalysts is inadequate for increased contaminant concentrations. The formation of organic intermediates during photo-catalytic process may occupy the active sites on the surface of catalyst and results in a reduction in the photo-catalytic degradation of the pollutant (24,36,37).

Effect of Irradiation Time

Contact time is one of the factors that should be considered properly in photo-catalytic processes to ensure maximum efficiency. According to the results obtained in this study, over time, reaction efficiency is increased. As Figure 7 shows, the trend of Cefixime degradation is faster at early 60 minutes and after that the removal efficiency becomes slower. Perhaps in the first times Cefixime is oxidized rapidly by the generated radicals. With the passage of time and creation of intermediates, the radicals are consumed (38).

Kinetic study

First-order kinetics equation can usually be used for different contaminants to measure the photo-catalytic reaction rate by considering the effect of intermediates and radiation (31):

\[\ln \left(\frac{C_0}{C_t} \right) = kt \]
Where \(C_0 \) and \(C \) represents the Cefixime concentration at initial and after specific time, respectively. A plot of \(\ln \left(\frac{C_0}{C} \right) \) versus irradiation time gives a straight line whose slope is \(k \). The regression analysis gave a correlation coefficient \((R^2) \) of 0.9756 for UV/TiO\(_2\), which display the good validity of the supposed first order kinetics (39).

Comparison with other works

In order to assess the degradation of Cefixime, different conditions by UV/TiO\(_2\), UV, TiO\(_2\) suspension alone under darkness and under sun light were studied and the results and kinetic data were shown in Figures 8-9 and Table 1.

![Figure 8. First-order kinetic model for the photocatalytic degradation of Cefixime (TiO\(_2\) = 1 mg/L, pH=3, Cefixime=20 mg/L).](image)

![Figure 9. Degradation of Cefixime by UV/ TiO\(_2\), UV, TiO\(_2\) under darkness and TiO\(_2\) under sun (TiO\(_2\)=1 mg/L, pH=3, Cefixime=20 mg/L).](image)

Table 1. Pseudo-first order kinetic parameters for degradation of Cefixime (catalyst dose=1mg/L, Cefixime concentration =20 mg/L and pH=3).

<table>
<thead>
<tr>
<th>Method</th>
<th>(R^2)</th>
<th>(k_{obs}) (min)</th>
<th>(K_{obs}) (1/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV/TiO(_2)</td>
<td>0.975</td>
<td>31.35</td>
<td>0.0319</td>
</tr>
<tr>
<td>UV</td>
<td>0.985</td>
<td>39.84</td>
<td>0.0251</td>
</tr>
<tr>
<td>TiO(_2)</td>
<td>0.971</td>
<td>714.28</td>
<td>0.0014</td>
</tr>
<tr>
<td>Sun light/TiO(_2)</td>
<td>0.784</td>
<td>1666.67</td>
<td>0.0006</td>
</tr>
</tbody>
</table>

All experiments followed pseudo-first-order rate law. Rate constants \((k_{obs}) \) was calculated for each of them and the trend of UV/TiO\(_2\) > UV > TiO\(_2\) under darkness > TiO\(_2\) under sun light was presented. According to above literature and Cefixime degradation results obtained in present study, it might be said that this drug can be efficiently degraded by photocatalysis. Also, Table 2 shows report’s findings about the UV/catalyst process to remove antibiotics. As can be seen in this Table, a good degradation efficiency at reasonable time was achieved.

In this paper photo-catalytic degradation of Cefixime antibiotic by TiO\(_2\) was studied. Parameters that have significant roles in antibiotic degradation process such as dosage of catalyst, pH, concentration of Cefixime and time, were evaluated and optimized. Complete degradation was achieved when 50 ml aqueous solution containing 20mg/L Cefixime and 1 mg/L TiO\(_2\) at pH=3 irradiated in 90 min. In order to comparison and evaluate the degradation process, the experiment was repeated for UV, TiO\(_2\) under darkness and TiO\(_2\) under sun light. The pseudo-first-order rate constants \((k_{obs}) \) corresponded to trend of UV/TiO\(_2\) > UV > TiO\(_2\) > sun light.

The results showed that UV/TiO\(_2\) system has most success to reduce Cefixime from aqueous solution so that after 60 and 90 min the degradation efficiency was 90.98%, 94.51%, respectively. However, the amount of catalyst dose in this study was as low as 1mg/L. The degradation efficiency by TiO\(_2\) in darkness and sun light weren’t significant after 210 min and was obtained 24.95% and 10.25% respectively. The results indicate that TiO\(_2\) photo-catalysis is a rapid and efficient technique for removal of Cefixime and could be a promise technique for removal of pollutant from wastewaters.
Table 2. Summary of studies on the antibiotic degradation processes by UV/catalyst

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Conc.</th>
<th>Operating conditions</th>
<th>Analytical methods</th>
<th>Results and comments</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefixime</td>
<td>5 µg/L</td>
<td>pH=5, 0.25 g/L of photocatalyst dosage, 300 min.</td>
<td>UV-Vis.</td>
<td>-more than 80% degradation of Cefixime solution in 300 min using 0.25 g/L</td>
<td>(37)</td>
</tr>
<tr>
<td>Cefixime</td>
<td>10.11 mg/L</td>
<td>0.41 g/L of ZnO–Fe3O4 catalyst, 127 min.</td>
<td>UV-Vis.</td>
<td>-about 99.1% of the drug was degraded</td>
<td>(40)</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>104 mg/L</td>
<td>UV light (6 W) at 365 nm</td>
<td>HPLC-DAD,</td>
<td>-No significant degradation occurred by 300 min of UV irradiation.</td>
<td></td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>105 mg/L</td>
<td>0.5-2.0 g/L TiO2</td>
<td>COD,</td>
<td>-At pH=5 and 1.0 g/L TiO2, 50% degradation was achieved for all compounds (81% DOC removal),</td>
<td>(41)</td>
</tr>
<tr>
<td>Cloxacillin</td>
<td>103 mg/L</td>
<td>pH=3-11</td>
<td>BOD5, TOC, DOC</td>
<td>-After 5 h, 20% of lincomycin was photolytically degraded. In the presence of TiO2 more than 98% of drug was oxidized within about 2 h.</td>
<td>(42)</td>
</tr>
<tr>
<td>Lincomycin</td>
<td>10-50 mg/L</td>
<td>pH=6.0</td>
<td>HPLC-UV, TOC,</td>
<td>-99.48% of Metronidazole was removed after 120 min at neutral pH and 0.5 g/L catalyst</td>
<td>(38)</td>
</tr>
<tr>
<td>Metronidazole</td>
<td>40 mg/L</td>
<td>125 W</td>
<td>HPLC,</td>
<td>-After 90 min, 91.4% of Tetracycline degraded.</td>
<td>(43)</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>27 mg/L</td>
<td>pH=5.0</td>
<td>HPLC-UV, TOC,</td>
<td>-After 90 min, 91.4% of Tetracycline degraded.</td>
<td>(43)</td>
</tr>
<tr>
<td>Cefixime</td>
<td>5 mg/L</td>
<td>60 min, 1 mg/L of catalyst</td>
<td>HPLC-UV</td>
<td>-more than 90% of the drug was degraded</td>
<td>This work</td>
</tr>
</tbody>
</table>

Ethical issues:

There were no ethical issues for this article.

Competing interests:

We affirm that this article is the original work of the authors and have no conflict of interest to declare.

Acknowledgments:

The author wish to thank the research center at Hormozgan University of Medical Sciences for financial support.

References:

چکیده
مقدمه: وجود مواد دارویی در اکوسیستم آبزی، پایداری و اثرات احتمالی آن بر موجودات زنده و سیستم های ناکارآمد در حذف این ترکیبات از آب و فاضلاب، سبب تکانه روبه روی رشد شده است. در این کار، تخریب فوتوکاتالیتی سفیکسیم با استفاده از UV/TiO$_2$ به منظور ارزیابی موثر بودن روش برای حذف سفیکسیم مورد بررسی قرار گرفت. تخریب سفیکسیم تحت UV، TiO$_2$ در تاریکی و TiO$_2$ در نور خورشید نیز مورد بررسی قرار گرفت و بازده تخریب با تجزیه فوتوکاتالیسی UV/TiO$_2$ مقایسه شد.

روش کار: برآمرشی آزمایشی مانند غلظت اولیه سفیکسیم (mg/L)، دوز کاتالیزور (mg/L)، pH محلول و زمان مورد بررسی و بهینه سازی فرآیند تخریب سفیکسیم با طراحی و بررسی پیوست HPLC. شرایط کروماتوگرافی شامل ستون C18 با مخلوط فاز متحرک از آب (33%) و بروم آبی (53%) با نسبت 55:45 می باشد.

نتایج: شرایط بهینه خنثی برای سفیکسیم با بازده بالا و زمان حفظ در TiO$_2$ اثبات شدند. در آزمایشات طراحی شده با تثبیت مقدار کاتالیزور، زمان تخریب و pH محلول، با تغییرات در این پارامترها، بازده تخریب مشابه می‌شد.

نتیجه‌گیری: بر اساس نتایج، فرآیند تخریب سفیکسیم با UV/TiO$_2$ می‌تواند به عنوان یک روش دقیق برای حذف سفیکسیم با بازده بالا در مراتب زمانی کوتاه باشد.

کلمات کلیدی: سفیکسیم، حذف، فوتوکاتالیز، UV/TiO$_2$.