Introduction: Most modern medical issues are inherently complicated and accurate decisions are not always likely to be made based on logical reasons. Furthermore, the huge volume of information relevant to a simple diagnostic area makes this decision making even more troublesome. Hence, with the advent of technology, there is an ever increasing need for the Clinical Decision Support System (CDSS) in hospitals. This study has been conducted in an Iranian hospital with the aim of identifying the most significant barriers for implementing CDSS and suggesting appropriate strategies to remove them.

Methods: This qualitative cross-sectional study was conducted in 2015. The sample population of the study included 180 physicians and nurses in Shahid Mohammadi hospital in Bandar Abbas whose performance was changed using CDSS. The participants were selected using stratified sampling from 23 different wards in the hospital. First, the barriers and strategies for implementation of CDSS in other countries were extracted from a review study which was used to make a preliminary model. Then, the results of a questionnaire and Delphi tests in three rounds were included in the final model.

Results: The most significant barriers in implementing CDSS were categorized into 6 groups according to the participants. These include barriers from human resources and infrastructures as well as financial, technical, environmental and legal ones. The barriers for them were divided into 5 categories including structural, technical, financial, human and environmental ones.

Conclusion: Since the most significant obstacle in implementing CDSS in this hospital was from humans, the hospital can use the barriers provided in 5 categories and better benefit from the system. These barriers are training the human resources before they start working, engaging them in implementation process of the CDSS and using evidence-based scientific databases in CDSS while removing fundamental barriers to the system.

Key words: Decision Support System, Clinical, Information Systems, Medical Informatics

Introduction:

A clinical decision support system (CDSS) is an application that analyzes data to help healthcare providers make clinical decisions. These systems take advantage of available medical information to diagnose different disorders and make prescriptions for patients (1). Also, they are computerized systems capable of problem solving (2).

The 80s saw the advent of computerized systems using improvisation techniques, mathematical programming and multi-factorial decision-making models. Now, considering management problems a variable in mathematical formulae, CDSS has proven useful and essential to hospital all over the world. Innumerable studies have demonstrated the effectiveness of CDSS in diabetic treatments (3), productivity and efficiency of hospitals and screening tests for inpatients (4), reduction of thrombotic complications for inpatients (5), development and operation of patient supervision programs (6), the treatment process of cardiovascular patients (7-9), prescription of medicines (10-12), preventing venous thromboembolism in inpatients (13-14) and even its positive effect in reducing the mortality rate (15). A study by García, et.al. Even related the possibility of physician errors and reduced quality of medical services to a lack of use of CDSS in healthcare facilities (16).

Due to these positive effects, computer decision support systems are increasingly suggested for in- and outpatients (17) and different commercial versions are available now (18). But these positive effects are not clearly observable in medical security and quality of medical services in some cases and despite apparent benefits, CDSSs are often criticized by users in that it is not effectively operated (19-20). Other critics such as Bu et.al. Believe that this system had many barriers including high costs of installation and staff training, complications in human-machine interaction, lack of necessary knowledge, lack of access to patient-specific data and other technical problems (21).

Other researchers suggested ways to implement CDSS, namely evidence-based scientific databases (18,22), development of country (24,25), government support (25,26) and human factors (26). This study aimed to identify barriers and suggest strategies for implementing CDSS in a general hospital in Iran.

Methods:

This qualitative cross-sectional study was conducted in 2015. The sample population of the study included 180 physicians and nurses who were employed in 23 different clinical wards of Shahid Mohammadi hospital whose performance altered when using CDSS. The participants were selected using stratified sampling from different wards in the hospital. This study was conducted in two stages. First, the barriers and implementation methods of CDSS in other countries were determined from a case study which was used to make a preliminary model. Then, the results of a questionnaire on prioritizing the barriers to this system and Delphi tests in three rounds were included in the final model with consensus among all participants.

Following compilation of data from the first round of study and the first Delphi round asking participants about the barriers and barriers for CDSS implementation, 340 ideas were identified out of which 190 were barriers and 150 were suggested strategies. In order to remove redundancies, repetitive ideas were omitted and all relevant ideas were incorporated in the preliminary model. With no localization in making this model, all ideas were sent to participants in second round of Delphi test in form of a semi-structured questionnaire and they were asked to provide any additional ideas or revisions to the existing ones. Lastly, by revising the collected data in the second round and rejecting items with less than 50% agreement rate and accepting those above 75%, the structured questionnaire for round three was compiled. This questionnaire, including 40 obstacle-related items and 18 suggested strategies for implementing CDSS in hospitals, was sent to participants. Finally, based on participants’ consensus 6 obstacle and 5 strategies categories were identified which will be discussed in the following parts.
Results:

The sample population included 90 physicians and 90 nurses with response rates of 78%, 88% and 97% in the first, second and third rounds.

The findings of present study which investigated barriers in and strategies for implementing CDSS in hospital indicated the most significant barriers in implementing CDSS in Shahid Mohammadi hospital based on mean agreement rate on each item separately and the mean agreement rate across all items in each group, which are listed in details in Table 1 and Table 2. These are:

Table 1. Human, structural and financial barriers in implementing CDSS according to priorities put forward by the participants

<table>
<thead>
<tr>
<th>Category</th>
<th>Priority No.</th>
<th>Title</th>
<th>Priority No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human barriers</td>
<td>1</td>
<td>Lack of a mental and emotional relationship between patients and physicians</td>
<td>2</td>
<td>Limiting physician decision making when the system is deciding</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Over considering physical data and ignoring patient’s mental and spiritual status</td>
<td>4</td>
<td>Lack of trust to a software-generated treatment</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Lack of physician trust in the software being up-to-date</td>
<td>6</td>
<td>Lack of human resources to implement the system</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Lack of physician trust in software treatment</td>
<td>8</td>
<td>Lack of staff trust in implementation of system by the administration</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Complications of human-machine interaction</td>
<td>10</td>
<td>Staff’s resistance to change</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Lowering patient-physician interaction ignoring a wide variety of diagnostic and therapeutic strategies for solving complicated problems</td>
<td>2</td>
<td>Covering a small area of g medical science</td>
</tr>
<tr>
<td>Structural barriers</td>
<td>1</td>
<td>Ignorance of a wide variety of diagnostic and therapeutic strategies for solving complicated problems</td>
<td>2</td>
<td>Limiting physician decision making when the system is deciding</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Lack of flexibility of the system</td>
<td>4</td>
<td>Lack of comprehension of relationships between body by computer systems</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Ignorance of medicines prescribed by the system</td>
<td>6</td>
<td>Not considering different body structures in different humans</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Ignorance of constitutional differences between humans</td>
<td>8</td>
<td>Ignorance of recurrences of diseases in patients</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Not considering organ movements inside human bodies</td>
<td>10</td>
<td>Ignorance of congenital disorders that are not diagnosable prior to surgery</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Increased workload</td>
<td>12</td>
<td>Lack of suitable data</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Lack of Information for making clinical and therapeutic decisions</td>
<td>2</td>
<td>High cost of installing this system</td>
</tr>
<tr>
<td>Financial barriers</td>
<td>1</td>
<td>High cost of installing this system</td>
<td>2</td>
<td>High cost of system operation and support</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>High cost of staff training</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Technical, environmental and legal barriers in implementing CDSS according to priorities put forward by the participants

<table>
<thead>
<tr>
<th>Category</th>
<th>Priority No.</th>
<th>Title</th>
<th>Priority No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical barriers</td>
<td>1</td>
<td>Integration of data from different sources</td>
<td>2</td>
<td>Time-consuming nature of inputting initial data in the system</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>The great amount of time needed for installing CDSS in hospitals</td>
<td>4</td>
<td>Problems in coding patient information</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Lack of interoperability between different systems</td>
<td>6</td>
<td>Technical problems of patients</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Lack of integration of different systems for accessing complete patient data</td>
<td>8</td>
<td>Lack of access to statistical functions and formulae to make diagnoses using algorithms</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>The possibility of system crashes and viruses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental barriers</td>
<td>1</td>
<td>Lack of national infrastructures</td>
<td>2</td>
<td>Lack of supporting policies in the governments</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Very low speed of staff training</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legal barriers</td>
<td>1</td>
<td>Ignorance of legal issues and patient rights</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Structural, technical, financial, human and environmental strategies in implementing CDSS as prioritized by the participants

<table>
<thead>
<tr>
<th>Category</th>
<th>Priority No.</th>
<th>Title</th>
<th>Priority No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural barriers</td>
<td>1</td>
<td>using accredited scientific sources for the system database</td>
<td>2</td>
<td>Different sensitivities of body organs must be given to the system</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Having access to a variety of data for making strategic decisions</td>
<td>4</td>
<td>Determining the urgency of treatment</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Having strong installation teams</td>
<td>6</td>
<td>Managing and supervising CVSS operation contracts</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>establishment of an operating agency to cover the technical aspects</td>
<td></td>
<td>Constant updating of databases by operating organization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of disease and medicine databases as well as treatment protocols</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>while providing services to software developing companies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical barriers</td>
<td>3</td>
<td>Providing the system with comprehensive information regarding human</td>
<td>4</td>
<td>Having the possibility to record and trend data regarding health</td>
</tr>
<tr>
<td></td>
<td></td>
<td>anatomy and physiology</td>
<td></td>
<td>care organizations in a unified patient file</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Constant update and support for the system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial barriers</td>
<td>1</td>
<td>allocating adequate budget to support system installation costs by</td>
<td>2</td>
<td>Dedicating enough funds for financial support of the system by the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the government</td>
<td></td>
<td>hospital</td>
</tr>
<tr>
<td>Human barriers</td>
<td>1</td>
<td>system operation training to human resources</td>
<td>2</td>
<td>Informing the patient about the system</td>
</tr>
<tr>
<td>Environmental barriers</td>
<td>1</td>
<td>government support for system installation</td>
<td>2</td>
<td>Hospital’s support of the system installation</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Enforcing patient support regulations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Priority 1, human barriers: lack of a mental and emotional relationship between patients and physicians was the most significant problem in this group.

Priority 2, structural barriers: ignorance of a wide variety of diagnostic and therapeutic strategies for solving complicated problems was the most significant problem in this group.

Priority 3, financial barriers: high cost of installing this system was the most significant problem in this group.

Priority 4, technical barriers: integration of data from different sources was the most significant problem in this group.

Priority 5, environmental barriers: lack of national infrastructures was the most significant problem in this group.

Priority 6, legal barriers: ignorance of legal issues and patient rights was the only influential factor in this group.

The most significant implementation barriers for the CDSS are as follows with detailed information in Table 3:

Priority 1, Structural strategies: using accredited scientific sources for the system database was identified as the most important solution.

Priority 2, Technical barriers: establishment of an operating agency to cover the technical aspects of disease and medicine databases as well as treatment protocols while providing services to software developing companies were identified as the most important barriers.

Priority 3, Financial barriers: allocating adequate budget to support system installation costs by the government was identified as the most important solution.

Priority 4, Human barriers: system operation training to human resources was identified as the most important solution.

Priority 5, Environmental barriers: government support for system installation was identified as the most important solution.

Conclusion:

The current study emphasized on identifying barriers in and barriers for implementing CDSS with the most significant obstacle being identified as human factor and the best solution being structural in this hospital according to the participants.

In human barriers, the most significant was a lack of a mental and emotional relationship between
patients and physicians while the least important
was lowering patient-physician interaction which
are in contradiction with the findings of Raghad
et.al. Since they suggested time and coding factors
as the most significant ones (27). This may be due
to a weakness of informatics infrastructures in Iran
and a lack of CDSS-trained physicians and nurses.
However, the findings of this study are in line with
those of Holbrook, et.al. In a study that assessed the
success of CDSS, since they too pointed at human
factor as being the most important obstacle. They
mentioned that using computer systems and
reducing the level of eye contact with patients might
appear improper and rude, hence causing patient
resistance and reluctance (28). The findings of this
study are also in conjunction with those of Safdari,
et.al. Who conducted a systematic review of the
effectiveness of CDSS in health care system and
suggested organizational commitment, personnel
commitment and team work between caregivers as
the most important barriers in implementing CDSS.
They also posited that the operators must be
informed of the fact that these systems can both be a
time-saving apparatus and a device to facilitate
access to evidence-based scientific databases and
instructional material (29).

In the structural barriers group as the second-
most significant ones, ignorance of a wide variety
of diagnostic and therapeutic strategies for solving
complicated problems was the most influential one
which is further supported by the findings of
Frakaro, et.al. That pointed to factors like system
design, user interface, installation strategy, assessing its effectiveness in patient satisfaction,
costs and unforeseen consequences (30).

Moreover, in a study titled the role of DSS in
healthcare, Omidian, et.al. Stated that coding
patient data is one of the most significant challenges
in implementing a CDSS in the country and
suggested patient data to be categorized under
standardized classifications to be used in
calculations in the correct way. They also
considered standardization of medical concepts to
be really time-consuming and costly and
emphasized on resolving them at the first stage of
implementing CDSS (31).

One of the most important strengths of this
project was a practical assessment of strategies for
implementing CDSS in hospitals by asking the ideas
of the two main groups influenced by this system
who considered structural barriers as the most
significant with using accredited scientific sources
for the system database as the first priority. Other
researchers also agreed with these viewpoints and
mentioned that CDSSs are responsible for human
lives and their decisions are significant for human
health, so it is of utmost importance that evidence-
based sources are used in making clinical decisions
(32-34). This study also considered the importance
of evidence-based sources of data.

One of the limitations of this study was that it
only considered the ideas of physicians and nurses
in one hospital and the priorities put forward by
them are not generalizable to the whole country. In
fact, agreement or contradiction of the findings of
this study with similar existing ones is highly
dependent on the environment and maturity of
informatics systems. As an instance, the most
significant obstacle in implementing CDSS in this
hospital was from humans while the best solution
was structural according to the participants of this
study, whilst another study in an organization with a
different level of informatics system maturity would
yield different outcomes, putting technical (35),
financial (36-38) or other barriers (39) in higher
ranks as barriers of implementing CDSS with
varying barriers accordingly.

Implementing CDSS in hospitals and healthcare
facilities is to some extent capable of reducing
hazards facing people in society, yet highly
dependent on goal-oriented management and
effective installation of the systems in
aforementioned organizations. Thus, in order to
install these systems successfully, it is of crucial
importance to consider challenges that physicians
and nurses introduced before, in the process of and
after implementing CDSS or any other informatics
system. Since the most significant obstacle in
implementing CDSS in this study was found to be
human factor, hospitals can take advantage of the
barriers suggested in all 5 categories here namely,
system operation training to human resources,
engaging staff in the system selection process and
using evidence-based databases in CDSS while
removing fundamental barriers, to implement these
systems.
Acknowledgments:

This article was extracted from a Master's degree thesis from Azad University of Bandar Abbas. The authors would like to extend their gratitude to those physicians and nurses who patiently filled out the questionnaires in three Delphi rounds.

References:

Barriers and Strategies in Implementing CDSS

شناسایی موانع و راهبردهای پیاده‌سازی سیستم پشتیبانی تصمیم در تصمیم‌گیری پزشکان بیمارستان

چکیده

مقدمه: اغلب مسائل در پزشکی ممکن است پیچیده باشد و دلایل منطقی برای تصمیم‌گیری دقیق وجود نداشته باشد. از سوی دیگر، حجم مفید و اطلاعات پزشکی حتی با یک محدوده کوچک، تنها در ارتباط است، به قدری زیادی که تصمیم‌گیری سریع و تقصیر را در خواهد ساخت. اما توجه به پیشرفت‌های تکنولوژی، نیاز به استفاده از سیستم‌های پشتیبانی تصمیم‌گیری که به کمک این موانع در مراحل مختلف تصمیم‌گیری بیشتر کمک می‌کند، بیشتر از گذشته است. این مطالعه به منظور شناسایی مهمترین موانع پیاده‌سازی سیستم پشتیبان تصمیم‌گیری پزشکان در یکی از بیمارستان‌های ایران انجام شد.

روش کار: این مطالعه کیفی به صورت مقطعی در سال 97 (1396) انجام شد. جامعه آماری مطالعه حاضر، 100 نفر از پزشکان و پرستاران بیمارستان شهر شهید محمدی بندرعباس بود که کارکرد و روش انتخاب این گروه از طریق نمونه‌گیری بر اساس کوئینتی طرح‌های مختلف مطالعه کرد. در ابتدا موانع و راهبردهای پیاده‌سازی سیستم پشتیبان تصمیم‌گیری تعیین شد و با استفاده از تقسیم‌بندی بالا، راهبردهای مناسب در هر دو گروه اجرایی و غیر اجرایی شناخته شدند. سپس یک پرسشنامه شامل فragenهای مختلفی در سه مرحله به نظر سنجی کارگذاری شد.

نتیجه‌گیری: مهم‌ترین موانع پیاده‌سازی CDSS طبق نظر جامعه مورد مطالعه در شش گروه تقسیم‌بندی که به ترتیب انسانی، مالی، فنی، پیش‌بینی‌پذیر، محیطی و قانونی بودند. راهبردهای مناسب برای برداشتن این موانع در هر دو گروه اجرایی و غیر اجرایی به‌صورت عاطفی، انسانی، تحقیق و پژوهشی همراه با استفاده از نرم‌افزار نیز در نظر گرفته شد.

کلیدواژه‌ها: سیستم پشتیبان تصمیم‌گیری پزشکان، موانع پزشکی، سیستم‌های اطلاعاتی افزونه‌سازی، مهندسی پزشکی