Total antioxidant capacities and reduction of ferric ions by extracts of three medicinal plants and their fractions

Sahereh Rouzbahan 1 Soheila Moein 2 Ahmad Homaei 3
Department of Biochemistry 1, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran. Department of Biochemistry 2, Molecular Medicine research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran. Department of Biology 3, Faculty of Science, University of Hormozgan, Bandar Abbas, Iran.

(Received 11 Apr, 2016) Accepted 10 Sep, 2016)

Original Article

Abstract

Introduction: Medicinal plants belong to Lamiaceae family are potential sources of new drugs to improve the treatment of diseases which its treatment is linked to anti-oxidative agents. In this paper, antioxidant potentials of some Lamiaceae species have been evaluated by two methods.

Methods: phosphomolybdate assay for total antioxidant capacity and ferric reducing antioxidant potential (FRAP) were used for evaluation of the antioxidant potentials of Zataria multiflora, Otostegia Persica and Salvia mirzayanii extracts and their fractions.

Results: The extracts and their fractions showed noteworthy activities in all antioxidant assays which compared to the reference antioxidant, ascorbic acid in a dose dependent manner. In FRAP method, ethyl acetate fraction of Salvia mirzayanii (SMA) and petroleum ether fraction of Otostegia persica (OPP) possessed the highest and the lowest antioxidant potentials, respectively. In total antioxidant capacity, butanol fraction of Zataria multiflora and chloroform fraction of Otostegia persica were the in activist and the activist samples, respectively.

Conclusion: These results may show that these plants act as free radicals scavengers and antioxidant compounds.

Key words: Free Radical, Otostegia persica, Salvia mirzayanii, Total Antioxidant Capacity

Correspondence:
Soheila Moein, PhD.
Department of Biochemistry,
Hormozgan University of Medical Sciences.
Bandar Abbas, Iran
Tel: +98 9171127539
Email: soheila_9@yahoo.com

Introduction:

Free radicals are formed when the cells use oxygen to generate energy. These products are generally reactive oxygen species (ROS) caused by the cellular reduction-oxidation process. ROS have beneficial effects on the cellular responses and immune functions at low or moderate concentrations (1) but at high levels, free radicals play a key role in the progress of tissue damages in various human diseases such as diabetes, aging, cancer, malaria, neurodegenerative disease, artherosclerosis and pathological events in the living organisms (2). Antioxidants are various beneficial compounds that could naturally control free radicals formation (3,4). Butylated hydroxy anisole (BHA) and butylated hydroxy toluene (BHT) are examples of effective synthetic antioxidants but they have mutagenic properties in some cases (5).
Recently, herbal medicine has gained popularity in the health care. According to the World Health Organization, about 65%–80% of the population which lives in developing countries depends essentially on the plants for primary health care. In the middle of the nineteenth century, researchers isolated and characterized different classes of bioactive compounds. Many of them are used as active ingredients of modern medicine, or as basic compounds for new drugs discovery. In treatment of various degenerative ailments, several medicinal plants exist that are over filled sources of phenolic compounds, flavonoids, alkaloids and tannins (6).

Plant extracts are sources of secondary metabolites that may function as antioxidants. The most important antioxidants produced by plants are carotenoids, ascorbic acid, tocopherols, cinnamic acids, benzoic acids and folic acid. In this study, 1 kg of aerial parts of three plants were collected from Genu Mountains northeast of Shiraz medicinal plants store. These plants identified by Dr. Mahmood reza Moein, and voucher specimens have been deposited at the herbarium of Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences (Table 1).

Methods:

Chemicals

Ferric chlorides, Ascorbic acid, Ammonium per-sulfate, Sodium acetate tri-hydrate, were obtained from Sigma Chemical Co. USA. TPTZ (2,4, 6-Tri (2-pyridyl)-1, 3, 5-triazine), Ammonium molybdate and, Sodium sulfate, Sulfuric acid were purchased from Merck, Germany.

Plant materials

Specimen collection

In this study, 1 kg of aerial parts of three plants includes Sm (MPRCM94-84), OP (MPRCM94-86) and Otostegia persica (Op) were collected from Genu Mountains northeast of Bandar Abbas and Zm (MPRCM94-83) was obtained from Shiraz medicinal plants store. These plants identified by Dr. Mahmood reza Moein, and voucher specimens have been deposited at the herbarium of Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences (Table 1).

Extraction and Fractionation

The collected plants were carefully separated, washed with distilled water, and then dried under shade for two weeks. The dried plants were crushed and grounded with a blender to obtain a powder. Condensed powders (650g of OP, 415g of Sm and 522g of Zn) were extracted with ethanol 80% (13L, 8 L and 11 L respectively) to give ethanol extracts. The extraction was repeated three times and the extracts were concentrated by rotary evaporator under vacuum at 40°C. Then the crude extracts were suspended in (water 30%, methanol 70%) and filtered. Then fractionation was done consecutively with 3×2000 ml petroleum ether, 3×1000 ml chloroform, 3×650 ml ethyl acetate and 3×160 ml n-butanol. (Figure 1).

<table>
<thead>
<tr>
<th>Phylum</th>
<th>Family</th>
<th>Genius</th>
<th>Scientific name</th>
<th>Data</th>
<th>Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnoliphyta</td>
<td>Lamiaceae</td>
<td>Salvia</td>
<td>Salvia mirzayanii</td>
<td>20 JUN 2012</td>
<td>Genu Mountains</td>
</tr>
<tr>
<td>Magnoliphyta</td>
<td>Lamiaceae</td>
<td>Otostegia</td>
<td>Otostegia persica</td>
<td>15 JUN 2012</td>
<td>Genu Mountains</td>
</tr>
<tr>
<td>Magnoliphyta</td>
<td>Lamiaceae</td>
<td>Zataria</td>
<td>Zataria multiflora</td>
<td>25 JUN 2012</td>
<td>Nearest of Shiraz</td>
</tr>
</tbody>
</table>
Table 2. Percent efficiency of plant extracts

<table>
<thead>
<tr>
<th>Samples</th>
<th>Amount of plant powder</th>
<th>Etanolic extraction</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zm</td>
<td>1 kg</td>
<td>700 gr</td>
<td>70%</td>
</tr>
<tr>
<td>Sm</td>
<td>1 kg</td>
<td>415 g</td>
<td>41.5%</td>
</tr>
<tr>
<td>Op</td>
<td>1 kg</td>
<td>520 gr</td>
<td>52%</td>
</tr>
</tbody>
</table>

Table 3. Total antioxidant capacities of the methanol extracts of Sm, Op, Zm and their different fractions expressed as mg ascorbic acid per mg of extract (mg of ASA/mg)

<table>
<thead>
<tr>
<th>Samples</th>
<th>mg of ASA/mg</th>
<th>Samples</th>
<th>mg of ASA/mg</th>
<th>Samples</th>
<th>mg of ASA/mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMP</td>
<td>0.79±0.015</td>
<td>ZMP</td>
<td>0.31±0.005</td>
<td>OPP</td>
<td>0.6±0.025</td>
</tr>
<tr>
<td>SMC</td>
<td>0.53±0.02</td>
<td>ZMC</td>
<td>0.31±0.02</td>
<td>OPC</td>
<td>0.83±0.002</td>
</tr>
<tr>
<td>SMA</td>
<td>0.02±0.002</td>
<td>ZMA</td>
<td>0.05±0.006</td>
<td>OPA</td>
<td>0.48±0.03</td>
</tr>
<tr>
<td>SMB</td>
<td>0</td>
<td>ZMB</td>
<td>0.05±0.025</td>
<td>OPB</td>
<td>0</td>
</tr>
<tr>
<td>SME</td>
<td>0.82±0.009</td>
<td>ZME</td>
<td>0</td>
<td>OPE</td>
<td>0.62±0.001</td>
</tr>
</tbody>
</table>

All the values are mean±SD of tree individual observations.

Table 4. Ferric reducing antioxidant potential of samples expressed as µg quercetin per mg of extract (µg of QUE/mg)

<table>
<thead>
<tr>
<th>Samples</th>
<th>0.05mg/ml</th>
<th>0.1mg/ml</th>
<th>0.2mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMA</td>
<td>34.32±0.78</td>
<td>64.31±3.44</td>
<td>92.7±2.41</td>
</tr>
<tr>
<td>SMB</td>
<td>5.88±0.17</td>
<td>8.15±0.54</td>
<td>11.05±0.72</td>
</tr>
<tr>
<td>SMC</td>
<td>4.83±0.08</td>
<td>5.27±0.02</td>
<td>5.49±0.02</td>
</tr>
<tr>
<td>SME</td>
<td>4.85±0.62</td>
<td>5.77±0.16</td>
<td>6.85±1</td>
</tr>
<tr>
<td>SMP</td>
<td>4.72±0.2</td>
<td>5.14±0.14</td>
<td>5.25±0.14</td>
</tr>
<tr>
<td>ZMA</td>
<td>11.21±0.23</td>
<td>21.88±1.05</td>
<td>42.94±2.31</td>
</tr>
<tr>
<td>ZMB</td>
<td>7.9±0.1</td>
<td>11.01±0.56</td>
<td>18.75±0.43</td>
</tr>
<tr>
<td>ZMC</td>
<td>0</td>
<td>0</td>
<td>5.14±0.3</td>
</tr>
<tr>
<td>ZME</td>
<td>4.65±0.44</td>
<td>7.41±0.29</td>
<td>11.08±0.04</td>
</tr>
<tr>
<td>ZMP</td>
<td>4.87±0.1</td>
<td>8.01±0.23</td>
<td>11.75±0.23</td>
</tr>
<tr>
<td>OPA</td>
<td>5.71±0.02</td>
<td>6.83±0.28</td>
<td>9.17±0.18</td>
</tr>
<tr>
<td>OPB</td>
<td>5.21±0.08</td>
<td>6.36±0.14</td>
<td>10.64±0.34</td>
</tr>
<tr>
<td>OPC</td>
<td>0</td>
<td>4.75±0.08</td>
<td>5.83±0.12</td>
</tr>
<tr>
<td>OPE</td>
<td>4.39±0.57</td>
<td>5.96±0.14</td>
<td>8.05±0.16</td>
</tr>
<tr>
<td>OPP</td>
<td>0</td>
<td>0</td>
<td>5.83±0.37</td>
</tr>
</tbody>
</table>

All the values are mean, ± SD of tree individual observations.
Figure 1. Scheme of fractionation of plants extracts

Figure 2. Total antioxidant capacities of samples in different concentrations
Blue, red and green colors showed 2 mg/ml, 4 mg/ml and 8 mg/ml of samples respectively.
Phospho Molybdate Assay for Total Antioxidant Capacity

The antioxidant activities of Zm, Op and Sm extracts and their fractions were evaluated by the phosphor-molybdenum method according to the procedure describe by Vijayabasker et al (15) with some modifications. For sample preparation, 0.1ml of the extract was combined with 1ml of reagent solution (sulfuric acid 0.6 M, sodium sulfate 28 mM and ammonium molybdate 4mM). The tubes contain the reaction solution were incubated at room temperature for 15min. Then the absorbance of the solution was measured at 695nm using a spectrophotometer, against blank. Blank contains 0.1ml of methanol instead of plant extract. The antioxidant activity is expressed as the number of mg/ml equivalents of ascorbic acid. All determinations were performed in triplicates.

Ferric Reducing Antioxidant Potential

Ferric reducing antioxidant potential (16) of Zm, Op and Sm extracts and their fractions were measured according to the method described by Benzie and Strain (17) with some modifications. FRAP reagent was prepared by mixing in 25ml acetate buffer (300mM; pH 3.6), 2.5 ml TPTZ solution (10 mM) and 2.5ml ferric chloride solution (20 mM). Quercitin was used as a standard in this assay, and its calibration curve was obtained by using its concentrations range from 0. 78µg/ml to 50µg/ml. To 1.5ml of FRAP reagent, 50µL of various concentrations of samples or standard were added. The mixture was incubated for 10 min in the dark (37 °C) and its absorbance was measured at 593 nm. The blank contained an equal volume of methanol instead of the plant extract. All determinations were performed in triplicates. Reducing power is expressed as the number of equivalence of quercitin. A calibration curve of quercitin (its range from 0 to 50µg/ml) was prepared. The reducing power in FRAP method was expressed as µg quercitin per mg extract.

Statistical analysis

The data were expressed as the mean±SD of three replicates. Analysis was performed using Graph pad and Excel 2010. One-way analysis of variance (ANOVA) was used to determine the differences among the means. Values of P≤0.05 were considered as significant differences.

Results:

Sampling information: taxonomic status, scientific name, date and location of gathering of plants are showed in Table 1.

Efficiency of extraction and fractionation

The efficiency of herbal extracts showed that Zm and Sm extracts possessed the highest (70%) and the lowest (41.5%) efficiency (Table 2),
respectively. Procedure of plants extracts fractionation is illustrated in Figure 1.

Phosphomolybdate Method for Total Antioxidant Capacity

Total antioxidant capacities of the ethanol extracts of \(S_m \), \(O_p \), \(Z_m \) and their fractions were determined using Phosphomolybdate method (Table 3 & Figure 2).

In comparison with other samples, \(Z_m \) had the highest total antioxidant capacity, while the chloroform fraction of \(O_p \) (OPC) showed the lowest total antioxidant capacity. Butanol fractions of \(S_m \), \(Z_m E \) and \(O_p \) didn’t show any antioxidant activities (Table 3 & Figure 2).

Ferric Reducing Antioxidant Potential

Reducing antioxidant potential of extracts was determined using FRAP assay. As Table 4 shows among all the samples, ethyl acetate fraction of \(S_m \) (SMA) and alcoholic extract of \(O_p \) (OPE) had the highest and the lowest reducing antioxidant potential, respectively. All the three extracts showed different increasing trends in activity with increase in extract concentrations (\(P<0.05 \)), (Figure 3 & Table 4).

Conclusion:

Oxidative stress has been known as the cause of the development and progression of several diseases. Supplementation of antioxidants neutralizes the effects of reactive oxygen species (ROS) which induce oxidative damages. Antioxidants can be synthesized in vivo such as reduced glutathione (18) and superoxide dismutase (SOD) or take as dietary antioxidants. Plants have long been used as a source of exogenous (i.e., dietary) antioxidants. It is believed that two-thirds of the world’s plant species have medicinal importance, and almost all of them have excellent antioxidant potentials. The interest in the exogenous antioxidant plants was firstly evoked by the discovery and subsequent isolation of ascorbic acid from the plants. Then, the antioxidant potentials of plants have received a great deal of attentions, because increase of the oxidative stress has been identified as a major causative factor in the development and progression of several life threatening diseases, such as neurodegenerative and cardiovascular diseases.

In addition, supplementation with exogenous antioxidants or boosting the endogenous antioxidants are promising methods for counter the undesirable effects of oxidative stress (19,20).

The antioxidants may be classified into repairing, preventing and scavenging antioxidants. The preventing antioxidants are one of the most important types that control the capacity of antioxidants and the subject of many researches (21). The free radical scavengers (antioxidants) donate one hydrogen or an electron (22).

In this study, we evaluated the antioxidant activities of \(S_m \), \(O_p \) and \(S_m \) extracts and their fractions by two methods include FRAP and TAC. The TAC assay is based on the reduction molybdenum (VI) to molybdenum (V) in the presence of a reducing agent (antioxidant) which forms a green Phospho- molybdate (V) complex. The absorbance of this complex is read by spectrophotometer at 765 nm (23). In this method, among different fractions, petroleum ether as a non-polar fraction showed the highest total antioxidant capacity and polar fractions showed the lowest total antioxidant capacities. It is assumed, that this is due to the presence of some active compounds in non-polar fraction, also other researchers report that non-polar compounds have antioxidant activities (24,25). But some researchers report that polar fractions possess the highest total antioxidant capacities (23,26). This difference may be caused by phytochemical properties of the plants, ecology of their growth environment and experimental condition that previously pointed (27).

Phenols and flavonoids are known as the main plant antioxidant compounds (28) and in other hand several studies have been reported that phenolic compounds are polar (29). According to this point in some studies, significant correlations between the antioxidant properties and the total phenolic content (30) are not found. Based on our results from TAC method, it seems that non-phenolic compounds may be involved in the antioxidant properties of these plants (30).

In FRAP assay, ferric ions are reduced to ferrous ions in the presence of an antioxidant which form a blue-colored ferrous tripyridyl triazine

Page 228
complex (Fe²⁺-TPTZ) at pH 3.6. This method is based on the transfer of one electron (ET) (31).

According to Table 4, SMA, ZMA and OPA showed the highest reducing antioxidant potentials (P<0.05) and after them SMB, ZMB and OPB showed the great reducing antioxidant potentials in comparison with other samples. Hosseini et al have reported that the presence of phenolic compounds in ethyl acetate fraction of Zm, is the reason of high antioxidant effect of this fraction (32). Also, Moein et al have reported that the ethyl acetate fraction of Sm extract exhibited interesting antioxidant properties (12,33). Our findings are agreed with the results of the other study that reported by Alwash et al. They also found high antioxidant activities in the ethyl acetate and butanol extracts of the aerial parts of Teucrium barbeyanum Aschers (34). Petroleum ether and chloroform fractions of Op, Sm and Zm showed the lowest antioxidant potentials. Generally in FRAP method, polar fractions showed the highest radicals reduction (antioxidant potential) and non-polar fractions showed the lowest radicals reduction. It is assumed that the presence of active compounds in polar fractions, inhibit the oxidation of macromolecules.

In present study, results which achieved from these two methods were different, this means that TAC method is used for antioxidant potentials of non-polar fractions, while FRAP method is used for antioxidant potentials of polar and semi-polar fractions.

According to our study and other studies (35) it is seen that ethanol is better for extraction of salvia species than methanol.

In other researches, significant antioxidant activity of Zm extract was reported by evaluation of scavenging DPPH radical, total antioxidant power (TAP) and thiobarbituric acid reactive substances (TBARS) in the serum of treated rats (36-38). Phytochemical screening of Zm extract supports the presence of monoterpenes as phenolic compounds in this plant with significant antioxidant properties (39). Therefore, the beneficial effects of Zm in neutralization of free radicals turn back to its compounds.

Sharififar et al reported that the extract of Op exhibited strong antioxidant activity and two compounds were responsible for antioxidant activities. By using UV, IR, MS, and ¹H and ¹³C NMR techniques, it was found that these two compounds are morin and quercetin (40). In other research, it is reported that some flavonoids such as morin, kaempferol, quercitin, and isovitexin which found in Op extract, may be responsible for the antioxidant activity of this plant.

Since nonphenolic compounds may decrease the antioxidant activity (41) it seems that use of non-purification extracts and their fractions was a limitation in this study and also use of just two methods for evaluation antioxidant activities was another limitations. Thus further research, on isolated compounds from these species seems necessary.

Present study indicates that ethanol extracts of three genius of Lamiaceae consists of Salvia mirzayanii, Otostegia persica and Zataria multiflora and some of their fractions possessed remarkable reducing power and total antioxidant capacity. These plants can be used for decreasing blood sugar and inhibition of α-glucosidase.

Acknowledgment:

The authors thank the Hormozgan University of Medical Sciences for the grant (Grant No.94102).

References:

25. Guaratti T, Lopes NP, Marinho-Soriano E, ColepicoLO P, Pinto E. Antioxidant activity and chemical composition of the non polar fraction of Gracilaria domingensis (Kützing) Sonder ex Dickie and Gracilaria birdiae (Plastino &

ظرفیت تام ضد اکسیدانی و توانایی احیای یونهای آهن سه ظرفیتی توسط عصارههای سه گیاه دارویی و فرکشنهای مختلف آنها

سازمان روزبهان، سهیلا معین، احمد همایی مربی‌پزشکی، دانشگاه علوم پزشکی هرمزگان، بندرعباس، ایران. "گروه بیوشیمی، دانشکده علوم پزشکی هرمزگان، بندرعباس، ایران.

چکیده

مقدمه: گیاهان دارویی خانواده نعناع منابع بالقوه داروهای جدید به منظور بهبود درمان بیماری هایی که درمان آنها وابسته به عوامل ضد اکسیداتیو می باشد، هستند. در این مقاله، ظرفیت ضد اکسیدانی برخی گیاهان خانواده نعناع، توسط دو روش بررسی شده است.

روش کار: از روش فسفو مولیبدات برای ظرفیت ضد اکسیدانی و از روش فرپ (پتانسیل ضد اکسیدانی احیای آهن سه ظروفیتی) برای ارزیابی خواص ضد اکسیدانی عصاره ها و فرکشن های آوریشن شیرازی، گلدر یا گل خارو و سالویا میرزایی استفاده گردید.

نتایج: عصاره ها و فرکشنهای آنها توانایی در قالب آنزیم‌های ضد اکسیدانی نسبت به ضماکسپین ممکن است به عنوان عوامل ضداکسیدانی عمل کنند.

کلیدواژه‌ها: آوریشن شیرازی، گل خارو، سالویا میرزایی، ظرفیت ضد اکسیدانی، ضداکسیدانی